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Abstract. In this work the M/M/1 queuing system with service interrupted is analysed by the customer himself

to take a vacation; during which he joins the orbit. Also, it is assume that the server when it becomes free, can

search for customers in orbit. Thus, the access to the server can be done from the queue by primary customers,

or from the orbit by secondary customers who have already made at least one pass through the server. In this

case: either the customer makes repeated attempts until the server becomes free; or the server goes looking

for customers immediately after the completion of each service (assuming that the queue line is free). Given

the complexity of the analysis of this model, we use the matrix analytic method, which allows us to obtain an

approximation of the limiting probabilities. Some useful performance measures are computed. These results are

supported by numerical examples and simulations to study the influence of some parameters on the characteristics

of the system.
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1 Introduction

Many considered Retrial queues have a characteristic feature that each service is preceded and
followed by an idle period, which is terminated either by the arrival of an orbital customer or
a primary customer. Even if there are some customers in the system who want to get service,
they cannot occupy the server immediately, because of their ignorance of the server state like
the orbital customers, they cannot see the status of the service facility. Therefore, after the
completion of each service, next customer enters service only after some time interval during
which the server is free, while there may be waiting customers in the orbit, as a selected sample,
we mention the works of Arrar et al. (2018, 2012, 2017), Artalejo & Gomez-Corral (2008) and
Atencia & Moreno (2006). However, there are some situations in which the server has some
initiative searching for blocked customers. Search for customers were discussed by Joshua et al.
(2020) and Nila & Sumitha (2022), not only as a mechanism to minimize the idle time of the
server or reduce the waiting time for the orbital customers in such models, but also to link and
give a combination of the retrial phenomenon and classical queues.
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They were interested in designing retrial queues that reduces the server(s) idle time and
achieve this by the introduction of search of orbital customers immediately after a service com-
pletion (with search we associate a probability) as follows: after completing a service, the server
either immediately picks up a customer from the orbit if any with probability p or remains idle
with probability 1 − p, and in this case, as in the classical retrial queue, a competition takes
place in between primary and orbital customers for service. Thus, if the orbital search is done,
a service is followed by another service. Otherwise, if no orbital search is done, a service is
followed by an idle time. Other related works are done in References: Nila & Sumitha (2020)
and Murugan & Vijaykrishnaraj (2019).

Recently, there have been several contributions considering queueing system in which the
server may provide a second phase service. Where the customer’s service may be viewed as
scheduled in two phases: Firstly, all the customers are processed in the first phase. Then, only
the customers who qualify are routed in the second phase. The first investigation of retrial
queue with second optional service was done by Krishna kumar et al. (2002). They considered
an M/G/1 retrial queue with second optional service, where at the first phase of service, the
server may push out the customer who is receiving such a service, to start the service of another
priority arriving customer. The interrupted customers join a retrial queue and the head of this
queue is allowed to conduct a repeated attempt in order to start again his essential service after
some random time.

Madan (2000) studied such an M/G/1 queue with second optional service in which first
essential service time follows a general distribution but second optional service is assumed to be
exponentially distributed. Medhi (2002) generalized the model by considering that the second
optional is also governed by a general distribution. Wang (2004) considers the model with the
assumption that the server is subject to breakdowns and repairs in which he assumed that second
optional service follows an exponential distribution. As a selection of the related literature, we
mention Artalejo & Choudhury (2004), Wang & Zhao (2007), where all customer received batch
mode service in a first phase of service followed by individual services in the second phase, and
the papers by Ayyappan & Gowthami (2021) and Majid et al. (2021).

However, in this present paper, our purpose is to investigate a much more generalized of a
Markovian model by the concept of repeated attempts under a linear retrial policy with orbital
search and taking on consideration the interruption service in order to leave the system forever
or to rejoin the orbit for another service. We concentrate on the computation of the stationary
distribution of the system state, by using of the matrix-analytic methods. This method was
developed by Neuts & Rao (1990), Latouche & Ramaswami (1999) and Harchol-Balter (2013),
for solving Markov chain that are quite complex. As a related work, the paper by Gómez-Corral
(2006) provides a bibliographical guide to the use of the matrix-analytic methods in retrial
queueing systems.

The rest of this paper is organized as follows: Section 2 describes the main model in de-
tails.The stochastic analysis is performed in section 3 and the special cases for that model are
presented. Section 4 is devoted to calculate the stationary distributions by using the Matrix-
Analytic Method. Numerical illustration of the model are given in section 5. We finish this work
by presenting concluding remarks.

2 Model description

In this model, we analyze an M/M/1 retrial queue with customers’ break choice and constant
retrial policy. We consider a single server retrial queueing system; whose orbit and queue have
infinite capacity. We suppose that primary customers arrive according to a Poisson process with
rate λ > 0. The service time is exponentially distributed with parameter µ. The following rules
govern the dynamic of the customers:

• If an arriving customer finds the server idle, he immediately begins his service. Otherwise,
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an arriving customer who finds the server busy, joins the queue line in the service area
according to FCFS discipline.

• We assume that a customer who has started his service, may decide to interrupt it and
go on vacation or take a break. For this fact, he has to leave the service area and enter
the orbit before returning for another service. Thus, the customer can leave the system
permanently with probability (1 − p1), after finishing his service, or join the orbit with
probability p1 and return to the server after a period of time.

• We assume that the customers have first access to the orbit after an initial service with
rate λp1, Ayyappan et al. (2010).

• An orbiting customer attempts to access to the server directly at random intervals time
(without rejoin the queue line in service area), where the inter-retrials times are exponen-
tialy distributed with rate θ > 0, according to the linear retrial policy α(1−δ0j)+jθ, given
that α is a constant rate, δ0j denotes Kronecker function and the rate jθ is the so-called
classical retrial policy rate deppending of the number of customers in the orbit j.

• An orbiting customer can access the server for another service only if the queue is empty.

• The server can go in search of customers immediately after each service completion, by
picking up an orbital customer with probability p. The search time is assumed to be
negligible. The probability for not going for the search of customers is q = 1− p.

• All the random variables defined above are mutually independent.

Adding to the previous parameters, we define the global traffic intensity given by

ρ =
λ+ λp1
µ(1− p1)

.

It is the ratio of the arrival rate λ+λp1 to the departure rate µ(1−p1), Ayyappan et al. (2010).
We can write also, ρ = ρq + ρo, where ρq = λ

µ(1−p1) is the traffic intensity of primary customers

and ρo = λp1
µ(1−p1) is the traffic intensity of orbiting customers.

3 Stochastic analysis

Denote by Nq(t) the number of customers in the queue line at time t, excluding any customer
that might be in service. No(t) the number of customers in the orbit at time t. And let C(t) be
equal to 0 or 1 depending on the state of the server if it is idle or busy at time t.

Let N(t) denotes the total number of customers in the system at time t (i.e. in orbit, in
queue line and in service), where N(t) = Nq(t) +No(t) + C(t).

So that the continuous-time stochastic process χ = {C(t), Nq(t), No(t); t ≥ 0}, describes the
state of the system with state space (c, i, j) ∈ {0, 1} × N× N.

Its infinitesimal transition rates q(0,i,j)(c,m,n) and q(1,i,j)(c,m,n) are given by

• For i = 0 and j = 0:

q(0,i,j)(c,m,n) =


λ, if (c,m, n) = (1, 0, 0);
−λ, if (c,m, n) = (0, i, j);

0, otherwise.

and

q(1,i,j)(c,m,n) =


λ, if (c,m, n) = (1, 1, 0);

λp1, if (c,m, n) = (0, 0, 1);
µ(1− p1), if (c,m, n) = (0, 0, 0);

−[λ+ λp1 + µ(1− p1)], if (c,m, n) = (1, i, j);
0, otherwise.

225



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.2, 2023

• For i = 0 and j ≥ 1:

q(0,i,j)(c,m,n) =


λ, if (c,m, n) = (1, 0, j);

α(1− δ0j) + jθ, if (c,m, n) = (1, 0, j − 1);
−[λ+ α(1− δ0j) + jθ], if (c,m, n) = (0, i, j);

0, otherwise.

and

q(1,i,j)(c,m,n) =



λ, if (c,m, n) = (1, i, j);
λp1, if (c,m, n) = (0, 0, j + 1);

µ(1− p1) + qµ, if (c,m, n) = (0, 0, j);
pµ, if (c,m, n) = (1, 0, j − 1);

−[λ+ λp1 + µ(1− p1) + qµ+ pµ], if (c,m, n) = (1, i, j);
0, otherwise.

• For j = 0 and i ≥ 1:

q(0,i,j)(c,m,n) =


λ, if (c,m, n) = (1, i− 1, 0);
−λ, if (c,m, n) = (0, i, j);

0, otherwise.

and

q(1,i,j)(c,m,n) =


λ, if (c,m, n) = (1, i+ 1, 0);

λp1, if (c,m, n) = (0, i, 1);
µ(1− p1), if (c,m, n) = (0, i, 0);

−[λ+ λp1 + µ(1− p1)], if (c,m, n) = (1, i, j);
0, otherwise.

• For i ≥ 1 and j ≥ 1:

q(0,i,j)(c,m,n) =


λ, if (c,m, n) = (1, i− 1, j);
−λ, if (c,m, n) = (0, i, j);

0, otherwise.

and

q(1,i,j)(c,m,n) =



λ, if (c,m, n) = (1, i+ 1, j);
λp1, if (c,m, n) = (0, i, j + 1);

µ(1− p1) + qµ, if (c,m, n) = (0, i, j);
pµ, if (c,m, n) = (1, i, j − 1);

−[λ+ λp1 + µ(1− p1) + qµ+ pµ], if (c,m, n) = (1, i, j);
0, otherwise.

The stochastic behaviour of the process χ can be represented with the help of the graphical
transitions shown in Figure 1.
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Figure 1: Graphical transitions

Particular Cases

Here, we present some special cases of our model by setting appropriate parameters as follows:

• The main model behaves like an AnM/M/1 Queue with Retrials After Interruption Service
and Orbital Search according to a constant retrial policy if θ = 0;

• The main model behaves like an AnM/M/1 Queue with Retrials After Interruption Service
and Orbital Search according to a classical retrial policy if α = 0;

• The main model behaves like an M/M/1 standard queue according to First Come, First
Served (FCFS) discipline if p1 = 0;

• The main model behaves like an AnM/M/1 Queue with Retrials After Interruption Service
if p = 0 (where there is no orbital search). In this case, we can get three cases, depending
on the retrial policy that is selected (it can be according to a linear retrial policy or either
according to a classical retrial policy when α = 0 or constant retrial policy when θ = 0 );

• The main model can be without waiting space. Then, if an arriving customer finds the
server idle, he immediately begins his service. Otherwise, an arriving customer who finds
the server busy, leaves the system without any effect on the system. Its infinitesimal
transition rates q(0,n)(c,m) and q(1,n)(c,m) are given by

q(0,n)(1,n) = λ,∀n ≥ 0;

q(0,n)(1,n−1) = α(1− δ0n) + nθ,∀n ≥ 1;

q(1,0)(0,0) = µ(1− p1);
q(1,n)(0,n) = µ(1− p1) + qµ,∀n ≥ 1;

q(1,n)(1,n−1) = pµ, ∀n ≥ 1;

q(1,n)(0,n+1) = λp1, ∀n ≥ 0.

The set of statistical equilibrium equations for the probabilities {π0,n, π1,n; ∀n ≥ 0} have
the following expressions
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λπ0,0 = µ(1− p1)π1,0; (1)

[λ+ α(1− δ0j) + jθ]π0,n = λp1π1,n−1 + [µ(1− p1) + qµ]π1,n, ∀n ≥ 1; (2)

{λp1 + µ(1− p1)}π1,0 = λπ0,0 + [α(1− δ0j) + jθ]π0,1 + pµπ1,1; (3)

{λp1 + µ(1− p1) + qµ+ pµ}π1,n = λπ0,n + [α(1− δ0j) + jθ]π0,n+1 + pµπ1,n+1, ∀n ≥ 1; (4)

and the normalization equation
∑

n≥0 π0,n +
∑

n≥0 π1,n = 1.

In this paper, the retrial models operating under the classical retrial policy or the linear
policy have transitions between states (0, 0, j) that depend on the third coordinate j. The
main analytical difficulties are related to this fact. Since we cannot obtain the steady state
distributions of the model in an explicit form. We can solve only one instance of the chain,
when the rates are all numbers, by using the Matrix analytic methods, which are approximate
numerical methods for solving complex Markov chains.

4 Matrix-Analytic Method

To illustrate the method, it is useful to start by rewriting the balance equations in terms of a
“generator matrix”, Q. This is a matrix such that

~π . Q = ~0, where ~π . ~1 = 1. (5)

Here, ~π is a 2× (b1 + 1)× (b2 + 1) row vector of all the limiting distribution probabilities

~π =(π000, π100, π001, π101, ..., π00j , π10j , π010, π110, π011, π111, ..., π01j , π11j , ..., π0ij , π1ij),

∀0 ≤ i ≤ b1, 0 ≤ j ≤ b2, (6)

and ~1 is an appropriately sized vector of 1s, and ~0 denotes a vector with an infinite number of
null entries.

Partitioning the limiting probability vector ~π as

~π =(~π0, ~π1, ...~πi), for 0 ≤ i ≤ b1, (7)

where

~πi = (π0i0, π1i0, π0i1, π1i1, ..., π0ij , π1ij), for 0 ≤ j ≤ b2. (8)

By ordering the states as

S ={(0, 0, 0), (1, 0, 0), ..., (0, 0, j), (1, 0, j), (0, 1, 0), (1, 1, 0), ..., (0, 1, j), (1, 1, j), ...

(0, i, 0), (1, i, 0), ..., (0, i, j), (1, i, j)},

we can express the infinitesimal generator Q of the process {C(t), Nq(t), No(t); t ≥ 0} in the
following matrix block form:

Q =


L0 F
B L F

B L F
. . .

. . .
. . .


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where

L0 =



−λ λ 0 0 0 0 0 0 0 0
µ(1− p1) A0 λp1 0 0 0 0 0 0 0

0 S T λ 0 0 0 0 0 0
0 pµ V A1 λp1 0 0 0 0 0
0 0 0 S T λ 0 0 0 0
0 0 0 pµ V A1 λp1 0 0 0
0 0 0 0 0 S T λ 0 0
0 0 0 0 0 pµ V A1 λp1 0
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .



L =



−λ 0 0 0 0 0 0 0 0 0
µ(1− p1) A0 λp1 0 0 0 0 0 0 0

0 0 −λ 0 0 0 0 0 0 0
0 pµ V A1 λp1 0 0 0 0 0
0 0 0 0 −λ 0 0 0 0 0
0 0 0 pµ V A1 λp1 0 0 0
0 0 0 0 0 0 −λ 0 0 0
0 0 0 0 0 pµ V A1 λp1 0
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .


With A0 = −[λ+ λp1 + µ(1− p1)], A1 = −[λ+ λp1 + µ(1− p1) + qµ+ pµ], S = α(1− δ0j) + jθ,
T = −[λ+ α(1− δ0j) + jθ] and V = µ(1− p1) + qµ.

F =



0 0 0 0 0 0 . . . 0
0 λ 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 λ 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 λ . . . 0
... . . .

. . .
. . .

. . .
. . .

. . .
...


,

B =



0 λ 0 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 λ 0 0 . . . 0
0 0 0 0 0 0 . . . 0
0 0 0 0 0 λ . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...


For detailed overviews of the main method, we refer to Artalejo & Gomez-Corral (2008) and

Baumann & Sandmann (2010).

5 Numerical examples

We present a numerical example to determine the steady state probabilities {(π0ij , π1ij), for
0 ≤ i ≤ 2 and 0 ≤ j ≤ 3}.

Therefore, note that

~π0 = (π000 π100 π001 π101 π002 π102 π003 π103);

~π1 = (π010 π110 π011 π111 π012 π112 π013 π113);

~π2 = (π020 π120 π021 π121 π022 π122 π023 π123),

229



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.8, N.2, 2023

also satisfies

~π . ~1 = 1;

2∑
i=0

~πi . ~1 = 1; (where ~1 is a 8× 1 column vector of ones)

2∑
i=0

3∑
j=0

(π0ij + π1ij) = 1. (9)

Q =

L0 F 0
B L F
0 B L


where

L0 =



−λ λ 0 0 0 0 0 0
V0 A0 λp1 0 0 0 0 0
0 S T λ 0 0 0 0
0 pµ V A1 λp1 0 0 0
0 0 0 S T λ 0 0
0 0 0 pµ V A1 λp1 0
0 0 0 0 0 S T λ
0 0 0 0 0 pµ V A2


,

L =



−λ 0 0 0 0 0 0 0
V0 A0 λp1 0 0 0 0 0
0 0 −λ 0 0 0 0 0
0 pµ V A1 λp1 0 0 0
0 0 0 0 −λ 0 0 0
0 0 0 pµ V A1 λp1 0
0 0 0 0 0 0 −λ 0
0 0 0 0 0 pµ V A2


,

with S = α+jθ, T = −λ−α−jθ, V = µ(1−p1)+qµ, V0 = µ(1−p1), A0 = −[µ(1−p1)+λ+λp1],

A1 = −[µ(1− p1) + µ+ λ+ λp1] and A2 = −[µ(1− p1) + µ+ λ].

F =



0 0 0 0 0 0 0 0
0 λ 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 λ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 λ


,

B =



0 λ 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 λ 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 λ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 λ
0 0 0 0 0 0 0 0


,
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Then, based on the matrix analytic method proposed, we briefly provide some numerical
examples in some cases that examine the sensitivity and the impact of the system parameters:
customers’ arrival rate λ, service rate µ, retrial rate θ, α, p and p1 on the limiting distribu-
tion ~π = (~π0, ~π1, ~π2). The values of all the parameters were chosen, so that they satisfy the
stability condition ρ < 1, (Sumitha & Udaya Chandrika, 2012) and the normalizing condition∑2

i=0

∑3
j=0(π0ij + π1ij) = 1.

After the above conditions have been verified, we study the behavior of the following perfor-
mance measures according to the retrial rate θ, the orbital search rate p and the traffic intensity
ρ:

• The mean number of customers in the system: n̄ =
∑3

j=0

∑2
i=0[(i+j)π0ij +(i+j+1)π1ij ];

• The mean number of customers in the queue: n̄q =
∑2

i=0 i
∑3

j=0(π0ij + π1ij);

• The mean number of customers in the orbit: n̄o =
∑3

j=0 j
∑2

i=0(π0ij + π1ij).

For different values of (p1, λ) ((0.25, 0.18), (0.50, 1.2), (0.75, 0.04285714)) and for a fixed value of
ρ = 0.3, µ = 1 , p = 0.4 and θ = 0.1, the Table 1 presents the values of ~π in case of the linear
retrial policy, for α = 0.05, Table 3 has the values of ~π in case of the classical retrial policy and
Table 5 has the values of ~π in case of the constant retrial policy for α = 0.05.

In a similar way, for another different values of

(p1, λ)((0.25, 0.3), (0.50, 0.1666667), (0.75, 0.07142857))

and for a fixed value of ρ = 0.5, µ = 1, p = 0.6 and θ = 0.2, the Tables 2, 4 and 6 present the
values of ~π, respectively, in case of: the linear retrial policy, the classical retrial policy and the
constant retrial policy, with α = 0.1.

Table 1: Values of ~π for the linear retrial policy with α = 0.05.

The limiting distribution ρ = 0.3, µ = 1, ε = 10−7, p = 0.4 , θ = 0.1
p1 = 0.25 λ = 0.18 p1 = 0.50, λ = 0.1 p1 = 0.75, λ = 0.04285714

π000
π100
π001
π101
π002
π102
π003
π103

0.590148
0.1390074
0.03858691
0.004798773
0.0008211582
0.000101595

1.285912× 10−5

1.661895× 10−6

0.645851
0.1250751
0.0402677
0.00346652

0.0006755377
5.737472× 10−5

8.154333× 10−6

7.279214× 10−7

0.7008437
0.1150974
0.02506241
0.001334005
0.0001726865

9.051445× 10−6

8.443465× 10−7

4.796267× 10−8

π010
π110
π011
π111
π012
π112
π013
π113

0.1307079
0.03136989
0.01292814

0.0006780884
0.0002684396
1.3189× 10−5

4.960086× 10−6

2.217114× 10−7

0.1130031
0.02260062
0.01534931
0.000368091
0.0002437705

5.429549× 10−6

3.492411× 10−6

7.069421× 10−8

0.1010489
0.01732267
0.01529023

0.0001158773
0.000100796

7.002361× 10−7

6.025273× 10−7

3.900015× 10−9

π020
π120
π021
π121
π022
π122
π023
π123

0.02940598
0.007057436
0.002612059
0.0001130267
4.262527× 105

1.915812× 10−6

7.153594× 10−7

3.152084× 10−8

0.0203566
0.00407132
0.002585267

4.996426× 10−5

3.193033× 10−5

6.316543× 10−7

4.032019× 10−7

7.943157× 10−9

0.01518462
0.002603077
0.002242

1.460633× 10−5

1.256121× 10−5

8.09982× 10−8

6.969096× 10−8

4.508726× 10−10∑2
i=0

∑3
j=0(π0ij + π1ij) 0.988683 0.994072 0.996457
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Table 2: Values of ~π for the linear retrial policy with α = 0.1.

The limiting distribution ρ = 0.5, µ = 1, ε = 10−7, p = 0.6 , θ = 0.2.
p1 = 0.25 λ = 0.3 p1 = 0.50, λ = 0.1666667 p1 = 0.75, λ = 0.07142857

π000
π100
π001
π101
π002
π102
π003
π103

0.4222393
0.1636481
0.03797358
0.009139597
0.001345373
0.0003398508

3.755425× 10−5

1.049169× 10−5

0.4985866
0.1575284
0.04210704
0.007247313
0.001201436
0.0002189052

2.678745× 10−5

5.526326× 10−6

0.5696219
0.1516412
0.02741862
0.003169886
0.0003476965

4.441288× 10−5

3.546893× 10−6

5.490973× 10−7

π010
π110
π011
π111
π012
π112
π013
π113

0.1478462
0.0591385
0.0242917

0.002480107
0.0009658119

9.020479× 10−5

3.413895× 10−5

3.022892× 10−6

0.1336726
0.04455754
0.03031824
0.001488791
0.0009807389

4.376732× 10−5

2.84758× 10−5

1.220767× 10−6

0.123095
0.03516999
0.03128152

0.0005389042
0.0004728451

7.545818× 10−6

6.611407× 10−6

1.046202× 10−7

π020
π120
π021
π121
π022
π122
π023
π123

0.05316112
0.02126445
0.008247441
0.0007646947
0.0002930559

2.657797× 10−5

1.016491× 10−5

9.183687× 10−7

0.03762091
0.0125403

0.008227445
0.0003624618
0.0002362586

1.019032× 10−5

6.681495× 10−6

2.93766× 10−7

0.02847453
0.008135581
0.007140646
0.0001141715

9.996592× 10−5

1.575531× 10−6

1.386409× 10−6

2.250118× 10−8∑2
i=0

∑3
j=0(π0ij + π1ij) 0.953352 0.977018 0.9867881

Table 3: Values of ~π for the classical retrial policy (α = 0).

The limiting distribution ρ = 0.3, µ = 1, ε = 10−7, p = 0.4 , θ = 0.1
p1 = 0.25 λ = 0.18 p1 = 0.5, λ = 1.2 p1 = 0.75, λ = 0.04285714

π000
π100
π001
π101
π002
π102
π003
π103

0.5754542
0.138109
0.0518391
0.00614818
0.001259196
0.000149501

0.00002151897
2.667823× 10−6

0.6264096
0.1252819
0.05630338
0.004542346
0.001072448

0.00008601555
0.00001399097
1.17783× 10−6

0.6833294
0.1171422
0.03674832
0.001746442
0.000276671
0.0000130069
1.39423× 10−6

7.052077× 10−8

π010
π110
π011
π111
π012
π112
π013
π113

0.1301741
0.03124178
0.01388877
0.000810443
0.000339369

1.823443× 10−5

7.086021××10−6

3.369883× 10−7

0.1134501
0.02269002
0.01615636
0.000437396
0.0003001244

7.402401× 10−6

4.854298× 10−6

1.04827× 10−7

0.1029526
0.01764901
0.01583333

0.0001309193
0.0001150413

8.496686× 10−7

7.331469× 10−7

4.835063× 10−9

π020
π120
π021
π121
π022
π122
π023
π123

0.02931635
0.007035924
0.002703665
0.0001259578
0.00004982266
2.444428× 10−6

9.454552× 10−7

4.457977× 10−8

0.02045363
0.004090726
0.002645083

0.00005451999
0.00003570503
7.677305× 10−7

4.994191× 10−7

1.050489× 10−8

0.01547427
0.002652733
0.00229322

0.0000153111
0.00001321699
8.741172× 10−8

7.53402× 10−8

4.931804× 10−10∑2
i=0

∑3
j=0(π0ij + π1ij) 0.9886985 0.9940382 0.9963889
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Table 4: Values of ~π for the classical retrial policy (α = 0).

The limiting distribution ρ = 0.5, µ = 1, ε = 10−7, p = 0.6 , θ = 0.2
p1 = 0.25 λ = 0.3 p1 = 0.50, λ = 0.1666667 p1 = 0.75, λ = 0.07142857

π000
π100
π001
π101
π002
π102
π003
π103

0.4066091
0.1626436
0.05005936
0.01115775
0.00193731

0.0004515529
0.00005594639
0.00001433503

0.4748591
0.1582863
0.05822721
0.009066058
0.001802785
0.0002956372
0.00004099495
7.547805× 10−6

0.5445161
0.155576
0.0401744

0.003953922
0.0005279602
0.00005704345
5.210992× 10−6

6.814002× 10−7

π010
π110
π011
π111
π012
π112
π013
π113

0.1476159
0.05904637
0.0254885

0.002798325
0.001120627
0.0001098381
0.00004200964
3.795683× 10−6

0.1349189
0.04497297
0.03157541
0.001683134
0.001126652

0.00005279341
0.00003448311
1.497482× 10−6

0.1265567
0.03615906
0.03250287

0.0005916009
0.0005206301

8.453775× 10−6

7.394912× 10−6

1.15888× 10−7

π020
π120
π021
π121
π022
π122
π023
π123

0.05318374
0.02127349
0.008444061
0.0008153968
0.0003188773
0.00003000734
0.00001160231
1.069688× 10−6

0.03803282
0.01267761
0.008416814
0.0003848167
0.0002533044
0.00001127704
7.427171× 10−6

3.312314× 10−7

0.02928964
0.00836847
0.007363395
0.0001194553
0.0001047189

1.662357× 10−6

1.462561× 10−6

2.371352× 10−8∑2
i=0

∑3
j=0(π0ij + π1ij) 0.9532326 0.9767359 0.986407

Table 5: Values of ~π for the constant retrial policy (θ = 0).

The limiting distribution ρ = 0.3, µ = 1, ε = 10−7, p = 0.4 , α = 0.05
p1 = 0.25 λ = 0.18 p1 = 0.50, λ = 0.1 p1 = 0.75, λ = 0.04285714

π000
π100
π001
π101
π002
π102
π003
π103

0.5540986
0.1329836
0.07636424
0.008577415
0.004504865
0.0004815817
0.0002493836

2.643485× 10−5

0.5988841
0.1197768
0.08839677
0.006609705
0.004522928
0.0003163217
0.0002137289

1.476659× 10−5

0.6620737
0.1134984
0.0634247

0.002636794
0.001381255

5.118274× 10−5

2.644291× 10−5

9.532396× 10−7

π010
π110
π011
π111
π012
π112
π013
π113

0.1259563
0.03022951
0.01542753
0.001049354
0.0006511389

5.184005× 10−5

3.405675× 10−5

2.812898× 10−6

0.109028
0.0218056
0.0171366

0.0005667095
0.0005304503

2.246323× 10−5

2.253655× 10−5

1.027721× 10−6

0.1000165
0.01714569
0.01600702
0.00015871

0.0001613974
2.136046× 10−6

2.313148× 10−6

3.585448× 10−8

π020
π120
π021
π121
π022
π122
π023
π123

0.02842768
0.006822644
0.002821136
0.00014873

8.096822× 10−5

5.838095× 10−6

3.725683× 10−6

3.021545× 10−7

0.01969275
0.00393855
0.002651154

6.198894× 10−5

5.021091× 10−5

1.746949× 10−6

1.676963× 10−6

7.304443× 10−8

0.01504186
0.002578605
0.002250057

1.593798× 10−5

1.452213× 10−5

1.295113× 10−7

1.283736× 10−7

1.575133× 10−9∑2
i=0

∑3
j=0(π0ij + π1ij) 0.9889997 0.9942467 0.9964885
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Table 6: Values of ~π for the constant retrial policy (θ = 0).

The limiting distribution ρ = 0.5, µ = 1, ε = 10−7, p = 0.4 , α = 0.1
p1 = 0.25 λ = 0.3 p1 = 0.50, λ = 0.1666667 p1 = 0.75, λ = 0.07142857

π000
π100
π001
π101
π002
π102
π003
π103

0.3906255
0.1562502
0.07058136
0.01435981
0.005877452
0.001107822
0.0004408081

8.107532× 10−5

0.4520127
0.1506709
0.08794192
0.01210586
0.00653187
0.000814456
0.00042967

5.189704× 10−5

0.5256363
0.1501818
0.06748801
0.005421417
0.002294034
0.0001582

6.565423× 10−5

4.276941× 10−6

π010
π110
π011
π111
π012
π112
π013
π113

0.1430658
0.05722632
0.02695917
0.003300677
0.001660531
0.0002179206
0.0001132066

1.531995× 10−5

0.1296599
0.04321998
0.03231844
0.001983047
0.001575287
0.0001081043

8.930036× 10−5

6.527447× 10−6

0.1227949
0.03508427
0.03233373

0.0006615969
0.0006234733

1.398633× 10−5

1.346917× 10−5

3.274094× 10−7

π020
π120
π021
π121
π022
π122
π023
π123

0.05174727
0.02069891
0.008584162
0.0008894178
0.0004051442

4.768429× 10−5

2.361115× 10−5

3.049585× 10−6

0.03668014
0.01222671
0.008326975
0.0004099293
0.0002971419

1.706986× 10−5

1.337758× 10−5

8.967875× 10−7

0.02845325
0.0081295

0.007196849
0.0001208488
0.0001082873

1.939634× 10−6

1.780166× 10−6

3.57627× 10−8∑2
i=0

∑3
j=0(π0ij + π1ij) 0.9542822 0.9774921 0.986788

On the other hand, it is worthwhile to note that the matrix analytic method proposed in
this paper works and is numerically stable one. Moreover, it can be applied on models which
satisfy all the previously mentioned conditions.

The impact of the retrial rate θ.

Table 7: Performance measures for ρ = 0.3, µ = 1, p1 = 0.25, α = 0.05 and p = 0.4.

θ no nq n

0.1 0.06227618 1.586191 1.83161

0, 5 0.03062629 1.575898 1.794099

1 0.02344094 1.573528 1.785564

5 0.01666917 1.571285 1.777516

10 0.01574638 1.570979 1.776419

50 0.0149947 1.57073 1.775525

100 0.01489988 1.570698 1.775412
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Table 8: Performance measures for ρ = 0.3, µ = 1, p1 = 0.50, α = 0.05 and p = 0.4.

θ no nq n

0.1 0.06415477 1.6579 1.877751

0, 5 0.03302917 1.645738 1.839925

1 0.02636358 1.643106 1.83181

5 0.02021255 1.640671 1.824317

10 0.01938403 1.640342 1.823308

50 0.01871086 1.640075 1.822487

100 0.01862606 1.640042 1.822384

Table 9: Performance measures for ρ = 0.3, µ = 1, p1 = 0.75, α = 0.05 and p = 0.4.

θ no nq n

0.1 0.04465559 1.705097 1.886251

0, 5 0.02655224 1.694198 1.86227

1 0.02291502 1.692 1.857448

5 0.01963069 1.690014 1.853092

10 0.01919352 1.689749 1.852512

50 0.01883922 1.689534 1.852042

100 0.01879464 1.689507 1.851983

Figure 2: The effect of θ on: n0, nq and n.

The influence of the retrial rate θ is illustrated in Figure 2, from the numerical results listed in
Tables 7, 8 and 9. We plot the performance measures by taking p = 0.4, ρ = 0.3, µ = 1, α = 0.05,
for the values of p1 = 0.25, 0.50 and 0.75.

We observe that nq, no and n decrease when θ increases, with α fixed for several choices of
the probability of service interruption and joining the orbit p1.

The impact of the orbital search rate p.

The effect of the orbital search rate p is shown in Figure 3, from the numerical results listed
in Tables 10, 11 and 12, where we have plotted the three performance measures, with respect
to p, for p1 = 0.25, 0.50 and 0.75.
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Table 10: Performance measures for ρ = 0.3, µ = 1, p1 = 0.25, α = 0.05 and θ = 0.1.

p no nq n

0.1 0.07616402 1.590922 1.848426

0, 2 0.07092634 1.589142 1.84209

0.3 0.06633377 1.587577 1.836528

0.4 0.06227618 1.586191 1.83161

0.5 0.058667 1.584954 1.827232

0.6 0.05543715 1.583844 1.82331

0.7 0.05253092 1.582843 1.819778

0.8 0.04990288 1.581936 1.816582

0.9 0.04751564 1.58111 1.813676

Table 11: Performance measures for ρ = 0.3, µ = 1, p1 = 0.50, α = 0.05 and θ = 0.1.

p no nq n

0.1 0.07341219 1.661547 1.88917

0, 2 0.07006187 1.660228 1.88504

0.3 0.06698661 1.659017 1.881246

0.4 0.06415477 1.6579 1.877751

0.5 0.06153932 1.656868 1.874521

0.6 0.05911702 1.655911 1.871528

0.7 0.05686783 1.655022 1.868748

0.8 0.05477432 1.654193 1.866158

0.9 0.0528213 1.653419 1.863741

Table 12: Performance measures for ρ = 0.3, µ = 1, p1 = 0.75, α = 0.05 and θ = 0.1.

p no nq n

0.1 0.04835619 1.707146 1.891142

0, 2 0.04706388 1.70643 1.889434

0.3 0.04583162 1.705748 1.887805

0.4 0.04465559 1.705097 1.886251

0.5 0.04353225 1.704477 1.884766

0.6 0.04245836 1.703885 1.883346

0.7 0.04143092 1.703319 1.881988

0.8 0.04044717 1.702777 1.880687

0.9 0.03950454 1.702259 1.879441

We observe that for several choices of the probability of service interruption and joining the
orbit p1, n, no and nq always decrease.

The impact of the traffic intensity ρ.

In Figure 4, we choose the values p1 = 0.25, 0.50 and 0.75 to represent the performance measures
nq, no and n, from the numerical results listed in Tables 13, 14 and 15, as functions of the traffic
intensity ρ.
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Figure 3: The effect of p on: no, nq and n.

Table 13: Performance measures for p = 0.4, µ = 1, p1 = 0.25, α = 0.05 and θ = 0.1.

ρ no nq n

0.1 0.008594285 1.84759 1.929467

0, 2 0.03080721 1.710121 1.874878

0.3 0.06227618 1.586191 1.83161

0.4 0.09979338 1.47379 1.795509

0.5 0.1410306 1.370917 1.763275

0.6 0.184278 1.275856 1.732519

0.7 0.2282345 1.187254 1.701635

0.8 0.271846 1.104098 1.669598

0.9 0.3141844 1.025631 1.635729

Table 14: Performance measures for p = 0.4, µ = 1, p1 = 0.50, α = 0.05 and θ = 0.1.

ρ no nq n

0.1 0.00873337 1.872918 1.943186

0, 2 0.03157344 1.758953 1.903693

0.3 0.06415477 1.6579 1.877751

0.4 0.1031173 1.568676 1.861936

0.5 0.1460473 1.489864 1.853523

0.6 0.1913093 1.420023 1.850527

0.7 0.2378539 1.357835 1.851594

0.8 0.2850423 1.302153 1.855845

0.9 0.3325048 1.252001 1.862714

We observe that for several choices of p1, the probability of service interruption and joining
the orbit, the mean numbers of customers in the queue nq and in the system n respectively, have
a decreasing shape with increasing values of ρ, but the main number of customers in orbit no is
strictly an increasing function of ρ.
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Table 15: Performance measures for p = 0.4, µ = 1, p1 = 0.75, α = 0.05 and θ = 0.1.

ρ no nq n

0.1 0.005983884 1.890856 1.949946

0, 2 0.02182542 1.792536 1.912772

0.3 0.04465559 1.705097 1.886251

0.4 0.07212007 1.627936 1.868175

0.5 0.1024134 1.560115 1.856631

0.6 0.1342283 1.500577 1.850082

0.7 0.1666678 1.448272 1.847361

0.8 0.1991511 1.402225 1.847609

0.9 0.2313297 1.361565 1.85021

Figure 4: The effect of ρ on: no, nq and n

6 Conclusion

In this paper a detailed approximation of the stationary distribution is presented for a single-
server Markovian queueing model with several parameters, by using the matrix-analytic method.
The present investigation includes many features simultaneously such as: (1) retrials according
to retrial linear policy; (2) Interruption service; (3) Orbital search. Note that all these realistic
assumptions have not been gathered together in the existing literature.

The analytical results have been obtained by using the Q-matrix (infinitesimal generating
matrix) technique. Particularly, we have obtained approximated values of the steady-state
distribution and some performance measures of the model. Moreover, some numerical results are
presented to demonstrate how the different parameters of the model influence on the behaviour
of the system.

Our study has two main objectives. The first one is to link between the corresponding retrial
queue with interruption service under several retrial policy (according to a constant retrial policy,
classical retrial policy or linear retrial policy) and the classical queue. That is why our model
can be considered as a generalized version of many existing queueing models associated with
many practical situations. The second objective is to introduce orbital search in retrial queueing
models which allows to minimize the idle time of the server. If the holding costs and cost of
using the search of customers will be introduced, the obtained results can be used for the optimal
tuning of the parameters of the search mechanism.
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This investigation can be further extended by incorporating the batch arrival of primary
customers or vacations (breakdowns) of the servers. But the analysis becomes more complicated.
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